

概述

SY8602是一款集成高压输入,采用恒定电流/电压的单节锂电池线性充电IC。IC可承受高达28V的输入电压,为防止过高的功耗,输入电压高于典型值为10V的过压保护阈值后,充电功能将关闭。高达28V的输入电压承受能力,对于低压充电器可省掉所需的输入过压保护电路。

SY8602预设4.2V/4.35V/4.4V充电浮充电压,恒流充电电流和充电截止电流,可通过外接电阻设定,IC可适应更多应用需求。当电池电压低于2.6V时,IC将以20%的恒流充电电流给电池预充电。

SY8602内部集成防倒充电路,不需要外部隔离二极管。内置热衰控制功能,可对充电电流进行智能调节,以提升IC的可靠性。

SY8602提供PPR和CHG引脚,为漏极开路的NMOS驱动结构,可驱动LED指示灯,亦可与EN引脚组合,与MCU进行简单的信号交互处理。当电源接入VIN且满足IC工作条件时,PPR为开启状态。CHG为充电截止指示,当充电电流低于设定的充电截止电流后,CHG关闭。当输入电压(交流适配器或者USB电源)被拿掉电时,SY8602自动进入一个低电流状态。

SY8602采用TDFN-2x2-8L封装,建议工作 温度范围为-40℃~+85℃。

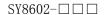
特点

- ◆ 预设4.2V/4.35V/4.4V浮充电压
- ◆ 充电电流10mA~500mA可设定,精度±10%
- ◆ 充电截止电流可设定,精度±15%
- ◆ 支持蓝牙耳机等小截止电流应用
- ◆ 较少元器件数量
- ◆ 涓流/恒流/恒压三段式充电
- ◆ 无需MOSFET、检测电阻器或隔离二极管
- ◆ 充电电流智能热调节
- ◆ 10V输入过压保护
- ◆ 28V输入电压,无需输入过压保护电路
- ◆ 电源存在指示和充电状态指示
- ◆ 自动再充电
- ◆ 符合IEC62368最新标准
- ◆ TDFN-2x2-8L封装

应用

- ◆ 可穿戴便携设备
- ◆ 无线蓝牙耳机
- ◆ IOT 设备
- ◆ 智能控制设备

典型应用电路



典型电路元器件

数量	元件名称	参数值	产品说明	封装	生产厂家
1	C1	10uF	Ceramic Cap, 35V, X5R	0805	Murata
1	C2	10uF	Ceramic Cap, 10V, X5R	0805	Murata
1	R1	301K	Film Resistor, 0603, 1%	0603	Panasonic
1	R2	3M	Film Resistor, 0603, 1%	0603	Panasonic
2	D1,D2		Led Green, Surface Mount	0603	Lumex: SML-LX0603GW-TR
2	R3,R4	510	Film Resistor, 0603, 5%	0603	TDK

订购信息

— 包装类型 (R:编带盘装)

- 电压版本 (U:4.40V, H:4.35V, L:4.20V)

封装类型 (D:TDFN)

订购型号	封装形式	说明	包装数量
SY8602-DUR	TDFN-2x2-8L	电池浮充电压 4.40V	4000
SY8602-DHR	TDFN-2x2-8L	电池浮充电压 4.35V	4000
SY8602-DLR	TDFN-2x2-8L	电池浮充电压 4.20V	4000

丝印说明

8602 2001

第一行:产品型号,SY8602

第二行: 年周号代码

管脚功能

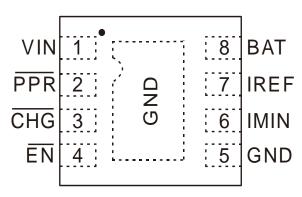


图 2 管脚俯视图

名称	端口	I/0	功能描述		
1170	7111 111	1/0	电源输入引脚。建议使用 1uF 或者更大的 X5R 陶瓷电容, 尽可能靠		
VIN 1 I E E E E E E E E E E E E E E E E E E					
			电源存在指示控制。漏极开路的 NMOS 驱动结构,有 15mA 电流驱动		
PPR 2 0 能力,可用于驱动 LED。当电源输入高于 POF			能力,可用于驱动 LED。当电源输入高于 POR 并低于 OVP 阈值时,		
			NMOS 开关开启,其它情况关闭。该引脚位不受EN控制。		
			充电指示控制。漏极开路的 NMOS 驱动结构,有 15mA 电流驱动能		
CHG	3	0	力,可用于驱动 LED。当充电时,NMOS 开关开启,当达到充电截止		
			条件时,NMOS 开关关闭。此引脚受EN控制,关闭充电器,NMOS 开		
			关关闭。 使能控制。内置 200k下拉电阻,当该引脚悬空或接地时,充电器		
ĒΝ	4	I	工作。当该引脚接到逻辑高电位时,充电器关闭。		
GND	5	_	地。		
GIVE			充电截止电流设定引脚。连接电阻到GND,可通过不同电阻值设定		
			充电截止电流,计算关系如下:		
IMIN	6	I/0	$I_{FOC} = \frac{10960}{R_{MMN}} (\text{mA})$		
			$_{IFOC} - \frac{1}{R_{IMIN}} $ (IIIA)		
			R _{IMIN} 电阻单位为k_。		
			恒流充电电流设定引脚。连接电阻到GND,可通过电阻值设定恒流		
			充电电流,计算关系如下:		
IREF	7	I/0	$I_{CC} = \frac{12040}{R_{IREF}} (\text{mA})$		
			RIREF电阻单位为k_,,电阻要尽可能靠近该管脚。可通过IREF引脚的		
			电压监测整个充电周期的电流,包括涓流、恒流、恒压阶段。当芯		
片被关闭时,该引脚电位为0V。					
			充电器输出引脚。将此引脚连接到电池正端,建议使用10uF或者更		
		大的X5R陶瓷电容,尽可能靠近BAT引脚。当EN脚为逻辑高电位			
EDAE			时,芯片被关闭,输出失效。		
EPAD	_	_	地		

功能框图

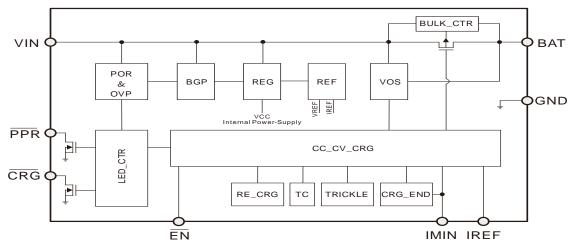


图 3 功能框图

电性参数

极限参数(1)

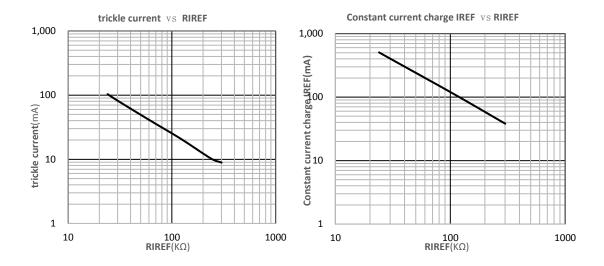
参数	最小值	最大值	单位
VIN to GND	-0.3	28	V
PPR, CHG, EN, IMIN, IREF, BAT to GND	-0.3	6	V
储存环境温度	-65	150	$^{\circ}\!\mathbb{C}$
工作结温范围	_	150	$^{\circ}\!\mathbb{C}$
HBM (人体放电模型)	4K	_	V
MM (机器放电模型)	200	_	V
R。」結到周围环境的热阻	120(参	$^{\circ}\! \mathbb{C}/\mathbb{W}$	

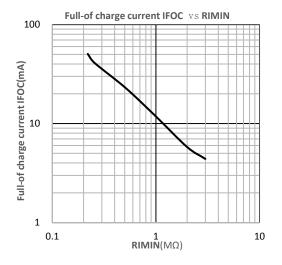
注(1): 最大极限值是指超出该工作范围芯片可能会损坏。

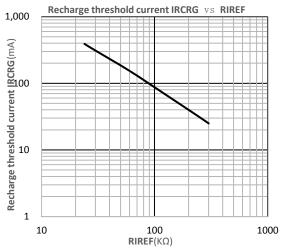
推荐工作条件

参数项	建议范围		
输入电压	4. 5V [~] 9. 5V		
充电电流	<500mA@VIN=5V		
尤电电视 	<100mA@VIN=9V		
截止电流	>2mA		
工作温度范围	-40°C~+85°C		

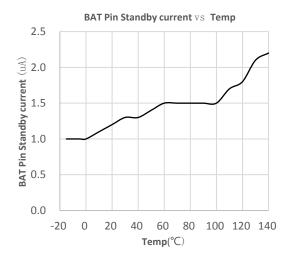
电气特性

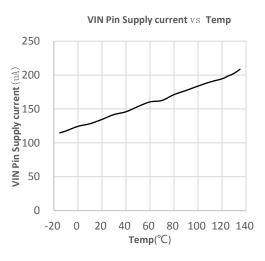

(无特别说明时, VIN=5V, BAT=3.8V, TA=+25℃)

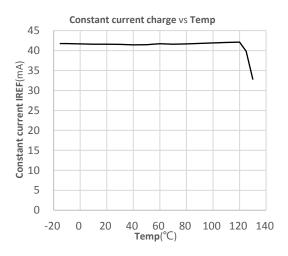

参数	符号	测试条件	最小值	典型值	最大值	单位
上电复位						
POR上升阈值	17	VBAT=3V, R _{IREF} =301k_,用PPR引脚指示	3. 6	3.8	4.0	V
POR下降阈值	V _{POR}		3.4	3.6	3.8	V
VIN-BAT失调电压						
V0S上升阈值	17	VBAT=4.4V, RIREF=301k_,用PPR引脚指示		110	150	mV
V0S下降阈值	V _{os}			70		mV
输入过压保护						
VIN过压阈值	T/	VBAT=4.4V, RIREF=301k_,用PPR引脚指示	9. 5	10.0	10.5	V
VIN过压滞回	V _{OVP}		0. 28	0.35	0. 42	V
待机电流	•					
BAT待机电流	$I_{\mathtt{BAT_STB}}$	VIN浮空, VBAT=4.4V			2. 5	uA
1171/II. de de \ 2	_	VIN=5V, VBAT=4. 4V, RIREF=301k_, EN=L		180		uA
VIN供电电流	$I_{ m vin}$	VIN=5V, VBAT=4. 4V, RIREF=301k_, EN=H		170		uA
电压调整						l
		R _{IREF} =301k_, 3mA充电电流,浮充4.2V	4. 18	4. 20	4. 22	V
稳定输出浮充电压	$V_{\text{OUT_BAT}}$	R _{IREF} =301k_, 3mA充电电流,浮充4.35V	4. 32	4. 35	4. 38	V
		R _{IREF} =301k_, 3mA充电电流, 浮充4.4V	4. 356	4. 40	4.444	V
充电						I
IREF电压(CC模式)	$V_{\text{IREF_CC}}$	VBAT=3. 8V, R _{IREF} =301k_	1. 17	1. 20	1. 23	V
IREF电压(涓流模式)	V _{IREF_TRK}	VBAT=2. 4V, R _{IREF} =301k_		0. 24		V
恒流模式充电电流	I_{cc}	VBAT=3. 8V, R _{IREF} =301k_	36	40	44	mA
涓流模式充电电流	${ m I}_{ m TRK}$	VBAT=2. 4V, R _{IREF} =301k_		8		mA
充电截止电流FOC	${ m I}_{ m FOC}$	R _{IREF} =301k_, R _{IMIN} =3M_, CHG 指示		4		mA
FOC->恒流阈值	$I_{ ext{RCRG}}$	R _{IREF} =301k_, R _{IMIN} =3M_, CHG 指示		26		mA
预充电						
涓流模式阈值(下降)		D 0011 D 01		2.60		V
涓流滞回电压	V_{TRK}	R _{IREF} =301k_, R _{IMIN} =3M_		0. 26		V
温度衰减	•					
温度衰减起点	T_{FOLD}			117		$^{\circ}$
逻辑输入/输出	•			•		
EN下拉电阻	$R_{\scriptscriptstyle EN}$		150	200	250	k_
EN逻辑高电位	$V_{\text{EN_H}}$	EN上升, CHG指示		1.0	1.2	V
EN逻辑低电位	$V_{\text{EN_L}}$	EN下降, CHG指示	0. 75	0.85		V
CHG导通电阻	R _{on_chg}	V _{CHG} =1V		180		v
CHG关闭漏电流	${ m I}_{ m LK_CHG}$	V _{CHG} =5. 5V			1	uA
PPR导通电阻	R _{ON_PPR}	V _{PPR} =1V		180		-
PPR关闭漏电流	${ m I}_{ ext{LK_PPR}}$	V _{PPR} =5. 5V			1	uA

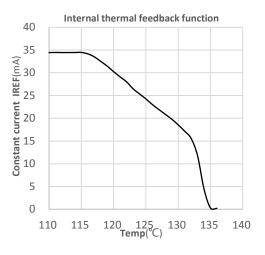


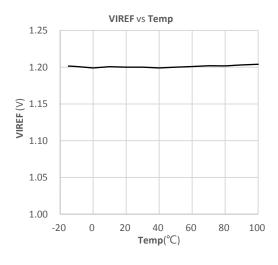
典型性能特征

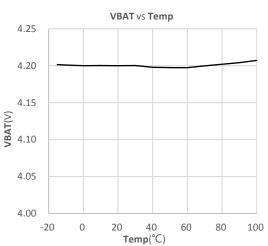

无特别说明时,VIN=5V,VBAT=3.8V,C1=1uF,C2=10uF,R3=301k Ω ,R4=3M Ω 。











功能说明

充电过程

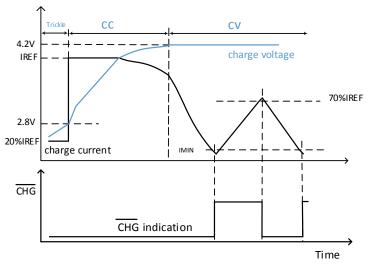


图 4 充电过程图

SY8602集成功率MOS,通过采样电池电 压信号对电池进行涓流、恒流和恒压充 电。当输入电压VIN大于欠压锁定阈值电压 且高于BAT电压时,若芯片使能控制端EN悬 空或接低电平,SY8602则开始对电池充 电, CHG引脚输出低电平, LED指示灯点亮 表示充电正在进行。当电池电压低于2.6V 时, 充电器采用涓流模式充电, 即用20%的 恒流充电电流对电池进行预充电。当电池 电压超过2.8V后时, 充电器采用恒流模式 充电,充电电流由IREF管脚和GND之间的电 阻R_{IREF}确定(参见图1)。当电池电压接近 4. 2V/4. 35V/4. 4V电压时, 充电电流逐渐减 小,直到SY8602进入恒压充电模式。当充 电电流减小到充电截止电流时, 充电周期 结束, CHG端输出高阻态, LED指示灯关 灭。充电截止电流由IMIN管脚和GND之间的 电阻R_{IMIN}确定(参见图1)。在充电指示完成 后, BAT仍提供稳定的4.2V/4.35V/4.4V浮 充电压。

SY8602 根据芯片内部温度,智能控制充电电流。当芯片结温超过 117℃后,充电电流以较小斜率自动降低充电电流。若温度持续升高,当芯片结温超过 130℃后,充电电流将以较大斜率衰减,直至降到 0。该

功能可以在保证系统可靠性的前提下,尽可能提升充电速度。

保护功能

SY8602 提供芯片智能温控、输入过压保护和输入欠压锁定,一旦触发这些保护,无论工作在何种模式,系统都自动关闭。当异常解除后,系统恢复到原工作状态。

PPR电源状态指示

输入电源需要同时满足下面三个条件, 才能将PPR电源指示灯点亮。

- VIN↓V_{POR}
- VIN-VBAT FV_{OS}
- 3. $VINLV_{OVP}$

PPR引脚内部为 NMOS 开关,可用于驱动 LED 指示灯或逻辑控制,以表明充电器电源的存在。当输入电压 VIN 高于芯片欠压锁定阈值并低于输入过压保护值,且比BAT 电压高时,PPR内部 NMOS 打开,引脚输出逻辑低电平,该引脚电流驱动能力可达 15mA。当 VIN 处于其他状态下时,PPR内部 NMOS 关闭。PPR引脚不受EN引脚的控制。

CHG充电状态指示

EN使能控制

EN引脚内置200k_下拉电阻,当该引脚悬空或接地时,充电器正常工作。当该引脚接到逻辑高电位时,充电器关闭。

恒流充电电流设定

IREF引脚接电阻到GND,可通过不同电阻值设定恒流充电电流。IREF引脚的工作电压,在恒流充电状态下为1.2V,在涓流充电状态下为0.24V。当芯片因过热衰减充电电流或者接近恒压时,IREF电压会逐渐下降。恒流充电电流与IREF引脚电阻计算关系如下:

$$I_{CC} = \frac{12040}{R_{IREF}} \quad (mA)$$

RIREF 电阻单位为k_, 电阻要尽可能靠近IREF 引脚。

充电截止电流设定

IMIN引脚接电阻到GND,可通过不同电阻值设定充电截止电流。IMIN引脚的工作电压为2.8V,充电截止电流与IMIN引脚电阻计算关系如下:

$$I_{FOC} = \frac{10960}{R_{IMIN}} \quad (mA)$$

R_{MIN}电阻单位为 k_e,该引脚通常接阻值较大 电阻,电流较小,需远离干扰源。电阻要 尽可能靠近 IMIN 引脚,尽量减小 PCB 寄生 电容。

应用说明

IREF, IMIN 和 CHG的设计指导

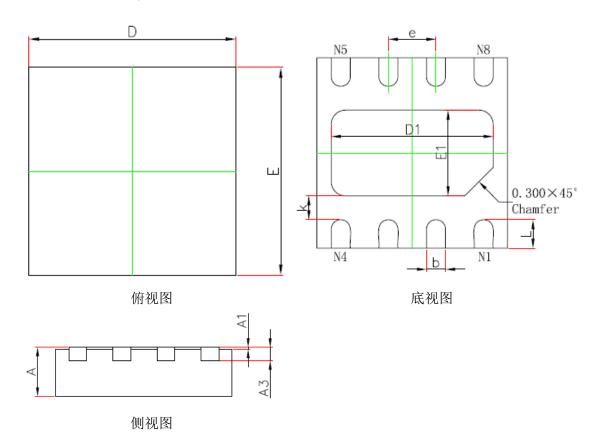
充电电流 IREF 越大,充电越快,但是过大的充电电流会降低电池寿命。在设计最大充电电流 IREF 时,应严格遵守电池供应商的厂家要求。

IMIN 是截止充电电流,如图 4 所示,只要EN不为高电平被禁用,不管CHG指示灯处于何种状态,SY8602 都会给电池充电。 当充电电流低于 IMIN 时,CHG信号变成高电平,指示灯灭;直到充电电流高于 70%的IREF 时,才重新启动CHG信号,指示灯变亮。

输入电容选择

输入电容能抑制供电瞬态响应,避免 启动时的震荡。通常,1uF X5R 陶瓷电容足 以抑制电源噪声。

输出电容选择


输出电容的选择标准,要满足充电器输出的稳定性,并能够旁路任何瞬时动态电流。通常,输出电容最小选取 1uF X5R 陶瓷电容,实际电容值要根据输出的实际应用要求来选取。

PCB LAYOUT 注意事项

- 1. IC底部有散热金属,在芯片内部已经连接到GND引脚。在设计PCB时,对应IC底部需增加焊盘、并且连接到地,焊盘连接的铜皮面积尽可能大,以提高产品的散热能力。使用中需将底部散热片与PCB板焊接良好,底部散热区域需要加通孔,并有大面积铜箔散热为优。多层PCB板加足够数量的过孔,对散热有良好的效果,散热效果不佳可能引起充电电流受温度保护而减小。
- 2. C2尽量靠近BAT脚,C1尽量靠近VIN引脚,并且走线时都经过电容再到IC管脚。
- 放置过孔会引起路径的高阻抗,如果设计中有大电流流过过孔,建议使用多个过孔以减小阻抗。
- 4. IC测试中,BAT端应该直接连接电池, 不可串联电流表,电流表可接在VIN 端。

TDFN-2x2-8L 封装外观图

符号	尺寸(mm)		
Α	0.550 ← 0.050		
A1	0.000 0.050		
A3	0.152REF.		
D	2.000←0.100		
E	2.000←0.100		
D1	1.700←0.100		
E1	0.900←0.100		
k	0.200MIN.		
b	0.200←0.050		
е	0.500TYP.		
L	0.300←0.050		

以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。